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Abstract—Phase equilibria and dissolution rate experiments are used to develop a petrogenetic model
for the high-Ti lunar ultramafic glasses. Near-liquidus phase relations of the Apollo 14 black glass, the
most Ti-rich lunar ultramafic glass, are determined to 2.2-GPa. The liquidus is saturated with Cr-spinel
at l-atm, olivine between ~0.5- and 1.5-GPa, and low-Ca pyroxene + Cr-spinel above 1.5-GPa. Ilmenite
does not crystallize near the liquidus and implies that high-Ti ultramafic glasses are not produced by
melting of an ilmenite-saturated source. We infer that high-Ti ultramafic magmas are derived from low-
Ti ultramafic parent magmas by assimilation of ilmenite * clinopyroxene * urKREEP + pigeonite in
the shallow lunar interior. Heat is provided by adiabatic ascent of the low-Ti ultramafic primary magmas
from the deeper lunar interior and crystallization of olivine during assimilation. The assimilation reaction
is modeled by mass balance and requires that ilmenite and high-Ca pyroxene are assimilated in a ~3:1
ratio, a much higher ratio than the proportion in which these minerals are thought to exist in the lunar
interior, In an effort to understand the kinetic controls on this reaction, the dissolution of ilmenite is
examined experimentally in both low- and high-Ti lunar magmas. We find that ilmenite dissolves
incongruently to Cr-spinel and a high-Ti melt. The dissolution reaction proceeds by a diffusion-controlled
mechanism. An assimilation model for the origin of high-Ti melts is developed that leaves the magma
ocean cumulates in their initial stratigraphic positions and obviates source hybridization models that

require lunar overturn.
1. INTRODUCTION

Lunar volcanic rocks vary widely in Ti content, from 0.26
to 16.4 wt% TiO, (Fig. 1). Many models have been pro-
posed to explain this broad chemical variation and each has
distinctly different implications for the evolution of the lunar
interior. The moon's interior is considered to consist of min-
eralogically diverse cumulate zones produced by an early
(~4.5 Ga.) magma ocean differentiation event, as proposed
by Smith et al. (1970) and Wood et al. (1970) (reviewed
in Warren, 1985). Models of magma ocean crystallization
(e.g., Taylor and Jakes, 1974; Walker et al.. 1975a; Longhi,
1977; Snyder et al., 1992) suggest that the deepest cumulates
are primarily ol * low-Ca pyroxene, which crystallized near
or sank to the base of the magma ocean, while the uppermost
cumulates are primarily plagioclase, which floated upward
in the ocean and formed the anorthositic crust. Highly frac-
tionated liquid was trapped between the deep mafic cumu-
lates and anorthositic crust or dispersed in the interstices of
the cumulates at approximately 100-km depth. This liquid
was enriched in Ti, Fe, and other incompatible elements. It
crystallized ilmenite and a range of silicates and also con-
tains the urKREEP, the final dregs of liquid from magma
ocean crystallization ( Warren and Wasson, 1979).

Low-Ti lunar magmas are thought to have formed primar-
ily by a partial melting process that left an ol = low-Ca
pyroxene bearing residue (e.g., Longhi, 1992). The high-Ti
contents and correspondingly higher trace element abun-
dances of high-Ti lunar magmas are attributed to the shal-
lower, ilmenite-bearing layer, but its role in high-Ti lunar
volcanism remains unclear. In early models, the ilmenite
bearing cumulates melted to produce high-Ti magmas (e.g.,
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Taylor and Jakes, 1974; Walker et al., 1975b). These models
proved inconsistent with experimental studies of the ul-
tramafic glasses that showed both low- and high-Ti ul-
tramafic glass compositions were saturated with olivine and
low-Ca pyroxene at similar depths (~300-km). Hubbard
and Minear (1975) proposed that high-Ti magmas were de-
rived from low-Ti primary magmas that assimilated shallow
ilmenite-bearing cumulates en route to the surface. This
model was rejected by Ringwood and Kesson (1976) based
on suppositions of the proportions of assimilants and the
thermal energy budget of the reaction. Lacking an adequate
model in a static moon, Ringwood and Kesson (1976) pro-
posed a dynamic overturn model, where the ilmenite-bearing
layer sank into the lunar interior. This sinking event mixed
the high- and low-Ti parts of the cumulate pile and formed
hybridized source zones, the melting of which could produce
magmas with a wide range of Ti contents. Subsequent physi-
cal models of the moon predicted overturn of the magma
ocean cumulate pile (e.g., Herbert, 1980). A number of
variations of the overturn and source mixing model have
been proposed by Hess (1991, 1993) and Hess and Parmen-
tier (1995) that also produce high-Ti magmas and a lunar
core.

Herein, we critically reevaluate the assimilation model for
the formation of lunar high-Ti magmas by modeling the
major element chemical variation observed in the lunar ul-
tramafic glasses. These ultramafic glasses are most similar
to high-Mg mare basalts (e.g., Ridley et al., 1973), but have
consistently higher Mg, Ni and molar Mg/(Mg + Fe) and
hence are the best candidates for primary magmas found on
the moon. Extensive study of the ultramafic glasses by Del-
ano ( 1986) has lead to the identification of twenty-five prim-
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Fig. 1. Plot of TiO; in wt% against Mg# (molar Mg/Mg + Fe)
of most primitive lunar glasses of Delano (1986).

itive endmembers that show fiftyfold variation in TiO,-con-
tent (Fig. 1), a broader range than exhibited by the mare
basalts.

2. EXPERIMENTAL AND ANALYTICAL METHODS
2.1. Phase Equilibria Experiments
2.1.1. Starting materials

The near-liquidus phase relations of a synthetic analog of Apollo
14 (AP 14) black glass (Delano, 1986) were determined in melting
experiments from 1-atm to 2.2-GPa. This composition was chosen
because it has the highest TiO.-content of the high-Ti ultramafic
glasses. The synthetic analog of this glass composition (Table 1)
was prepared from high-purity oxides and silicates and ground in
an agate mortar under ethyl alcohol for 6 h to ensure homogeneity.

2.1.2. 1-atm Experiments

Each l-atm experiment was conducted using approximately 50-
mg of AP 14 black glass powdered mix, pressed into a pellet using
Elvanol as a binding agent. The pellet was sintered to a 0.8-mm
diameter, Fe-Pt loop fabricated to minimize Fe-exchange with the
silicate melt. The loop was hung in the hotspot of a Deltech DT31VT
vertical quenching furnace. All experiments were performed at an
oxygen fugacity corresponding to Fe-FeO using constant mixing
proportions of H, and CO, gases with flow rates of approximately
0.1-mL/s. Oxygen fugacity was monitored using a ZrO,-CaO elec-
trolyte cell calibrated at the Fe-FeO buffer. Temperature was moni-

tored with Pt-Pty,Rh, thermocouples calibrated against the melting
points of NaCl, Au, and Pd on the IPTS 1968 temperature scale.
Experiments were drop-quenched into water. Temperature was var-
ied to constrain the liquidus temperature and first crystalline phase
appearance.

2.1.3. High pressure experiments

Starting material for the high pressure experiments was prepared
by pressing 500-mg of powdered mix into a pellet using Elvanol as
a binding agent. The pellet was hung on 0.004" Pt wire and condi-
tioned at an oxygen fugacity corresponding to the Fe-FeO buffer at
1075°C for 24 h using the same furnace and techniques employed
for the l-atm experiments. 10 mg of conditioned starting material
was placed in a graphite crucible and welded shut in a Pt outer
capsule, These capsules were placed in an alumina sleeve and posi-
tioned in the hotspot of a graphite heater with MgO spacers. Experi-
ments were performed in a 0.5” piston-cylinder apparatus, similar
to the design of Boyd and England (1960), using BaCO, as the
pressure medium. Pressure was calibrated against the transition of
anorthite-gehlenite-corundum to Ca-Tschermak's pyroxene as deter-
mined by Hays (1965). Temperature was monitored with Wy;Re -
W;sRe,s thermocouples with no correction applied for pressure. The
thermal gradient near the hotspot was measured at 20°C/0.1". Sam-
ple thickness is <0.05", resulting in a thermal gradient of <10°C.
Runs were pressurized cold to 1.0-GPa and then heated to 865°C at
100°C/min where they were held for 6 min. They were then pumped
to desired run pressure and heated to final run temperature at 50°C/
min. Experiments were quenched by shutting off the power. Experi-
ments above 1.5-GPa were decompressed to 1.0-GPa immediately
prior to quenching to prevent the formation of quench crystals in
the liquid regions of the charge (Putirka et al., 1996).

Experiments were performed over a pressure range of 1-2.2-GPa
and a temperature range that spanned the liquidus and subliquidus
phase boundaries (Table 2). All observed primary phases were ana-
lyzed (Table 3). A materials balance calculation was used to esti-
mate the phase proportions (Table 2) and determine whether the
silicate charge had changed composition during the experiment. The
silicate charge can lose Fe to the Pt capsules if fractures form in the
graphite crucibles and allow the liquid phase to contact the Pt outer
capsule. Experiments where the materials balance calculation
showed FeO loss of >1% relative were discarded.

2.2. Imenite Dissolution Experiments
2.2.1. Starting materials

The dissolution rate of ilmenite was determined in both low- and
high-Ti lunar magmas ( Table 1 ). The ilmenite portion of the charge
was cut from a homogeneous ilmenite megacryst from the Frank
Smith kimberlite mine, South Africa. The megacryst is polycrystal-
line but completely unaltered, which is rare for large ilmenite sam-
ples. Trace amounts of sulfide are present along some grain bound-
aries. Synthetic analogs of the lunar magma compositions ( Table 1)
were prepared and conditioned at an oxygen fugacity corresponding

Table 1. Starting materials used in experiments.

Sample MgO AlO, Si0, Ca0 TiO, Cr,0, MnO FeO NaO K,O Ni P,

Phase equilibria study

Apollo 14 black glass 133 46 340 69

164 092 031 245 023 0.16 - -

Hlmenite dissolution rate study

IImenite, Frank Smith Mine 114 0.64 0.13
Apollo 15 green glass, groupC 18.2 7.74 48
Apollo [1 high-K basalt, 10072 7.64 7.89 41.2

Luna-24 ferrobasalt 631 126 47.1

0.07 518 170 0.17 332 - - 022 -
857 026 057 0.19 165 - - -

12028 024 194 034 027 - 0.19

128 0.88 0.23 025 202 02 002 - -

Oxide values in wt%. Compositions of Apollo 14 black and Apollo 15 green glasses from Delano (1986).
Ilmenite was provided by Dr. Nobu Shimizu and is from the Frank Smith mine, South Africa. Apollo 11
high K basalt composition from Beaty et al. (1979). Luna 24 composition from Grove ( 1978).
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Table 2. Conditions and results of experiments on synthetic analog of Apollo 14 black glass.

Run # Pressure-GPa  Temperature-°C  Duration (h)  Phases present  Proportions ¥
B-162 2.18 1460 13 glopx,sp I:tr:tr -
B-166 1.70 1370 84 gl,ol,opx,ilm 75:7:14:5 05
B-167 1.17 1370 22 gl.ol,opx,sp 87:10:2:1 04
B-169 1.19 1400 31 gl,ol 94:5 1
B-170 1.29 1385 44 gl.ol,opx,sp 91:9:tr:itr 0.2
B-171 1.66 1425 14 gl.ol,opx,sp 94:4:2:tr 0.2
B-172 1.41 1420 18 gl.ol,opx,sp 90:7:3:tr 0.5
B-175 1.48 1450 5.5 gl - -
B-176 222 1490 8.5 gl - -
BPC-17 1.16 1390 24 glol,sp 95:4:1 04
B-181 0.86 1420 24 gl - -
B-182 1.48 1435 15 gl - -
1 0.0001 1360 4.5 gl.sp L:tr -
2 0.0001 1375 35 gl - -
3 0.0001 1400 3 gl - -

Phase proportions determined by multiple linear regression of analyzed phases (Table 3) against
staring composition (Table 1). tr indicates trace abundance. (- ) not determined.

to the Fe-FeO buffer using the technigues discussed in the phase
equilibria section.

2.2.2. Experiments
Experiments were performed in a piston cylinder device at 1-

GPa pressure using the techniques described for the phase equilibria
experiments. The run assembly uses a larger graphite capsule than

employed for the phase equilibria experiments and does not contain a
Pt outer capsule. Iimenite disks were prepared by coring the ilmenite
megacryst with a diamond coring bit (0.11" i.d.). The resulting core
was sliced into disks. using a low-speed diamond wafering saw, and
polished on 600-grit sandpaper. Disks prepared by this technique
were 0.7—1.5 = 0.04 mm. The disk was sandwiched between equal
sized layers of lunar magma composition (Fig. 2) in the graphite
capsule. This sample geometry impedes convection within the charge

Table 3. Composition of run products in experiments on synthetic analog of Apollo 14 black glass.

Run# phase N MgO AlLO, Si0, CaO TiO, Cr,0, MnO FeO Na,0 K,O Total
B-162 glass 7 134 24 51 05 339 26 7 T 164 2.7 094 02 0.33 006 232 1.5 0.15 0.08 0.11 0.06 100.2
opx & 275 04 29 03 532 05 1.64 006 095 0.1 112 01 021 002 134 0.1 003 003 - - 1009
spin 3 108 03 119 0.1 031 001 0.13 0.03 11.5 04 344 0.8 0.25 0.00 31.5 0.7 - - - - 100.7
B-163 glass 7 11.1 02 541 005 324 03 82 0.1 191 01 0.89 003 027 004 21.0 03 021 0.04 0.13 001 987
opx 4 275 03 30 03 525 05 1.66 002 09 0.1 110 007 022 001 134 03 004 001 - - 1004
spin 3 10.1 0.2 126 0.1 028 002 007 000 93 02 380 0.6 0.27 0.01 30.1 05 - - - - 100.7
B-166 glass 7 93 0.1 582 005 315 0.1 895 006 182 0.1 042 0.04 033 0.05 246 03 027 003 0.14 0.00 996
ol 3 372 0.09 0.1 003 377 0.1 031 001 022 003 021 001 028 0.03 248 02 - - - - 1009
opx 5 256 03 32 05 519 07 23 0t 11 01 08 01 026 00215201 006 000 - - 1005
iim 3 85 0.1 1.64 003 006 000 0.11 001 52.1 02 6.1 0.2 0.25 0.01 331 03 - - - - 1019
B-167 glass 7 9.9 0.07 539 0.08 333 0.1 7.82 007 178 0.1 058 0.05 0.26 0.04 24.7 0.2 0.15 0.04 0.12 0.01 100.0
ol 4 387 008 007 001 378 0.0 024 001 024 002 024 002 024 001 239 0.1 - - - - 1014
opx 6 27.4 0.1 22 02 524 03 156 004 1.19 007 091 0.04 022 005 144 0.1 002 001 - - 1003
spin 4 100 03 88 02 0.3 0.03 0.08 003 167 02 295 02 030 001 359 02 - - - - 1014
B-169 glass 7 11.3 0.1 5.16 0.05 3433 0.20 7.32 0.05 165 0.1 0.81 007 024 004 240 02 0.18 0.05 0.11 001 997
ol 4 397 02 008 0.05 38.05 0.04 0.22 001 0.17 0.01 026 0.01 022 003 224 0.2 - - - - 101.1
B-170 glass 7 10.7 04 534 0.03 339 0.1 7.60 008 174 03 0.71 0.03 0.34 0.03 243 0.2 0.19 005 0.11 0.01 100.2
ol 4 386 02 008 000 379 0.2 025 00! 0.16 002 027 005 020 0.04 236 0.1 - - - - 1010
opx 4 270 0.2 245 006 526 02 1.62 003 1.14 002 1.00 008 021 000 142 0.1 002 002 - - 1003
spin 4 98 008 9.9 007 022 0.07 008 0.02 160 0.1 328 02 028 001 334 03 - - - - 1018
B-171 glass 7 11.7 008 506 003 331 0.1 729 002 168 0.1 075 005 025 0.05 247 02 020 003 0.13 001 995
ol 7 403 0.1 009 001 379 02 023 001 025 001 029 001 025 001 21.3 03 - - - - 1007
opx 4 282 03 23 04 526 04 146 004 1.06 0.12 101 0.15 0.18 0.01 13.1 0.1 0.01 001 - - 99.9
spin 2 11.0 0.10 100 0.1 026 000 0.13 000 129 0.1 340 00 026 001 315 00 - - - - 1001
B-172 glass 7 10.8 0.04 524 004 332 02 762 005 174 0.1 064 0.04 0.26 0.07 25.1 03 026 005 0.13 001 100.2
ol 3 391 03 008 0.02 381 0.1 023 000 0.17 003 023 002 023 002 229 0.1 - - - - 1011
opx S 277 02 234 009 527 02 146 001 1.09 005 104 005 020 001 137 02 000 000 - - 100.2
spin 3 10.1 0.10 9.10 007 000 0.00 0.14 000 152 0.1 312 00 037 001 344 00 - - - - 1004
BPC-17 glass 7 120 0.08 502 004 341 02 725 005 164 0.1 064 004 028 007 243 02 020 004 0.12 001 999
ol 3 401 0.1 007 002 383 0.3 022 001 0.17 0.03 029 002 023 004 214 0.1 - - - - 100.8
spin 3 103 0.1 7.35 007 000 0.00 0.14 000 145 01 355 00 035 001 323 00 - - - - 1004

Oxide values in wt%. Reported vatue

concentration not determined.

is average of N points, number

after oxide is | standard deviation on

average. ( —) indicates
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Fig. 2. Assembly used for ilmenite dissolution experiments carried
out in the piston cylinder apparatus. [lmenite disk is centered in the
hot spot of the furnace, and the furnace is surrounded by BaCO,
pressure medium.

(Zhang et al., 1989). The ilmenite disk and capsule form a tight fit
to prevent movement of the disk during the experiment.
Experiments were run at a variety of temperatures and durations
to determine the temperature and time dependence of dissolution rate
(Table 4). Four different magma compositions were selected to allow
for near-liquidus experiments to be performed at each temperature
and note the effect of melt TiO, content on dissolution rate. Most
experimental products consist of liquid plus the ilmenite disk; some
also contain phenocrysts of Cr-ulvospinel, olivine, or pigeonite (phase
appearances in Table 4, compositions in Table 5). The thickness of
the ilmenite disk in the experiments was determined using a Zeiss
reflected light microscope with an ocular scale accurate to +10-pm.

2.3. Analytical Methods

The experimental products were analyzed by electron microprobe
at the Massachusetts Institute of Technology on a JEOL 733 Su-
perprobe using wavelength-dispersive techniques. Data were reduced
using the correction scheme of Bence and Albee (1968} with the
modifications of Albee and Ray (1970). Crystalline phases in the
experiments were analyzed at 15-kV accelerating potential, 10-nA
beam current, and a spot size on the order of 2-um. Spot size was
increased to 10-um for glass analyses in order to minimize diffusion
of alkali elements away from the region of interest during the an-
alysis.

3. EXPERIMENTAL RESULTS

3.1. Results of Phase Equilibria Experiments

The liquidus of the synthetic Apollo 14 black glass (Fig.
3) was determined up to 2.2-GPa. At l-atm the liquidus
phase is chrome-ulvospinel (Cr-usp). From about 0.5 to 1.5-
GPa, olivine (ol) replaces Cr-usp as the liquidus phase. The
black glass is cosaturated with ol, low-Ca pyroxene (opx),
and Cr-usp at 1.5-GPa and 1430°C. At pressures above 1.7-
GPa, the liquidus is saturated with opx and Cr-usp. The
liquidus is notably lacking ilmenite. llmenite does appear as
a subliquidus phase in one experiment approximately 70°
below the liquidus and is separated from the liquidus by a
Cr-usp stability field. Our study represents the first on the
Apollo 14 composition. Two other high-Ti lunar ultramafic
glass compositions have been studied at elevated pressure:
Apollo 17 Orange Glass (Green et al., 1975) and Apollo 15
Red Glass (Delano, 1980; Kesson, 1975). The experiments
of Green et al. (1975) and Kesson (1975) should be consid-
ered reconnaissance in nature. Green et al. (1975) found
ilmenite as a near solidus phase in experiments carried out
on Apollo 17 orange glass. No information is provided on
the container used, the duration of the experiment, the oxida-
tion state of the experimental material, or whether the experi-
mental products interacted with their enclosing containers.
Delano (1980) carried out a careful study of the Apollo 15
red glass and also observed ilmenite near the solidus and
found that a higher-temperature Cr-usp stability field sepa-
rated the ilmenite field from the liquidus.

3.2. Results of Ilmenite Dissolution Experiments

IImenite dissolution rate experiments performed over the
temperature range of 1550-1270°C using synthetic analogs

Table 4. Conditions and results of ilmenite dissolution rate experiments. Pressure = 1 GPa for all experiments.

Exp# Liquid composition Temperature °C Initial length (cm) Final length (cm) Duration (sec) Dissolution rate (cm/sec)

Phases present

49  Apollo 15 green glass 1450 0.074+3 0.038+1 255 1.41E-04 lg+ilm

50 Apollo 15 green glass 1400 0.107+3 0.099+3 375 2.23E-05 Ig+ilm

51 Apollo IS green glass 1450 0.08614 0.02612 1800 3.35E-05 Ig+ilm+Cr-usp+ol
52 Apollo I5 green glass 1350 0.070+1 1800 1.09E-05 Ig+ilm+Cr-usp+ol+pig
53 Apollo 15 green glass 1550 0.081x1 480 1.69E-04 Ig+Cr-usp

54 Apollo 14 black glass 1450 0.074x4 0.027+1 1800 2.59E-05 Ig+ilm+Cr-usp

66  Apollo 11 high-K 1270 0.077+4 0.074+4 5700 5.88E-07 Ig+ilm

67 Luna 24 1270 0.15614 0.148+8 5580 1.49E-06 Ig+ilm

68 Luna 24 1270 0.0761 0.058+2 18960 9.78E-07 Ig+ilm

All experiments at 1-GPa.
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Table 5. Crystalline phases in some ilmenite dissolution rate experiments.

Phase MgO ALO, Si0, CaO TiO, Cr,0, MnO FeO NiO
Experiment #51

olivine 436 0.07 393 020 029 025 0.07 150 023

chromian-ulvospinel 159 4.82 0.t1 008 31.8 11.0 0.10 36.0 0.39

chromian-ulvospinel 15.8 4.80 0.15 0.07 31.8 11.0 020 36.3 034

ilmenite disk 13.5 0.78 0.03 006 58.3 170 0.13 262 0.17

exsolution lamellae 136 1.78 0.15 0.02 38.4 257 023 442 025
Experiment #54

chromian-ulvospinel 14.8 3.71 0.17 0.05 30.0 154 0.23 35.7 0.17

ilmenite disk 127 0.65 0.04 007 57.8 272 0.16 268 0.13

1319

Values in wt.

of low- and high-Ti lunar melt compositions are summa-
rized in Fig. 4. As expected, ilmenite dissolution rate in-
creases as temperature increases. Measured dissolution rate
decreases with increased run duration and as melt TiO,
increases in the liquid at the ilmenite-melt interface. The
ilmenite disk completely dissolved in the super-liquidus,
1550°C experiment in low-Ti Apollo 15 green glass within
the 480-sec duration of the experiment, hence the reported
dissolution rate is a minimum value, indicated by the verti-
cal arrow and question mark in Fig. 4. Of the three experi-
ments performed at 1450°C, two used low-Ti Apollo 15
green glass and varied run duration (255- and 1800-sec).
In the 1800-sec experiment, over 65% of the disk dissolved
and the disk lost contact with the sides of the capsule and
sank to the bottom. Minor amounts of Cr-usp and olivine
crystallized in this experiment (Table 5). The Cr-usp phe-
nocrysts are ~10-pm in size and are found suspended in a
thin layer (~100-pm) around the ilmenite disk (Fig. 5).
Olivine phenocrysts are found in a thin layer near the top
of the charge. Olivine is Foy and its floatation indicates
that the melt had a density >3.37-g/cm’.

A third experiment performed at 1450°C used high-Ti AP
14 black glass liquid. This experiment was run for 1800-sec
and has a slightly slower (Fig. 4) dissolution rate than the
equivalent experiment with low-Ti AP 15 green glass liquid.

7 tiquid
1500 1 W olivine — T
W] orthopyroxene liquid ol
g_) 5 spine iquid only
! @lim
Q 1450 | O
= o Iq+opx+sp
« liquid onty
o
g
Ig+oi Ig+ol
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[ B CELR T *
H— P
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I B
1350 .

0 0.5 1 15 2 25
Pressure-GPa

Fig. 3. Phase diagram of synthetic analog of Apollo 14 black
glass. Data from Tabie 2.

The end products of the Apollo 14 black glass liquid experi-
ment were similar to those produced in the 1800-sec AP 15
green glass liquid experiment. Dissolution proceeded to
about the same extent and the ilmenite disk sank to the
bottom of the charge. Cr-usp phenocrysts ( Table 5) precipi-
tated in a layer around the ilmenite. The liquids in both of
the 1800-sec, 1450°C experiments (Apollo 15 green and
Apollo 14 black glass liquids) vary in TiO- content from 32
wt% near the ilmenite disk to 24 wt% near the upper part
of the charge.

Dissolution experiments at subliquidus temperatures for
Apollo 15 green glass liquid contained the ilmenite disk and
minor olivine crystals at 1400°C and olivine and pigeonite
crystals at 1350°C. Experiments performed at 1270°C using
low- and high-Ti mare basalts were near liquidus and con-
tained no crystalline phases aside from the ilmenite disk.
The results of the 1270°C experiments show similar relations
to the higher temperature experiments. Dissolution rate can
be described by a linear relation in square root of time vs.
dissolved distance. As initial liquid Ti-content increases, dis-
solution rate decreases.

The data points from all of the experiments were fit to an
Arrhenius relationship:

Dissolution rate = (15432* 10 17)*el()‘l)l‘)'f(ﬂ“Temperulure);
R* = 0.64541.

This fit is shown in Fig. 4. Although the expression aver-
ages a small, but real variability in dissolution rate that
results from variation in liquid composition, it is consid-
ered adequate for comparison with results of other dissolu-
tion rates and for testing the assimilation models devel-
oped below.

Several characteristics of the experiments indicate that
ilmenite dissolution is controlled by diffusive mass transport
in the liquid (Cooper, 1962). Plots of the thickness of the
dissolved ilmenite layer vs. square root of time are linear
(data in Table 4). The linear relation is best defined in the
1270°C experiments. The 1400 and 1450°C experiments and
the single experiment at 1550°C show a square root of time
vs. dissolution distance dependence. This square root of time
vs. distance dependence is consistent with a diffusion-con-
trolled, temperature-activated process. The scatter present in
the 1400 and 1450°C dissolution rate composition vs. dis-
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tance profiles probably results from the rapid dissolution
rates at these temperatures, and from the complication that
some dissolution occurs as the experiment approaches the
run conditions. The observed decrease in dissolution rate as
TiO- at the interface increases is also consistent with a melt
diffusion control.

Several complicating effects operate during ilmenite dis-
solution. Free convection at the interface occurs when the
dense, high-Ti melt becomes unstable with respect to the
adjacent lower density, low-Ti melt. Figure 5 shows these
effects in two of the dissolution experiments. Both show a
boundary layer that consists of a high-Ti liquid (Fig. 6) and
Cr-usp crystals. This dense boundary layer is trapped on the
top of the dissolving ilmenite disk, but convective instabilit-
ies develop nonetheless and transfer high-Ti melt into the
overlying low-Ti layer. One plume is visible in the upper
left of the upper layer in Fig. 5b. Below the ilmenite disk,
dense, high-Ti melt descends into and mixes with low-Ti
melt. Plumes of descending high-Ti liquid are evident in both
dissolution experiments. Figure 6 shows the compositional
variations in the boundary layer that forms at the top inter-
face of the ilmenite disk. This layer varies from 0.3 to 0.15
mm in thickness and is present in all experiments, even in
those of long duration (e.g., BPC-67). The compositional
variation does not resemble that of a diffusion profile. Mass
transfer is rapid and may be driven by instabilities induced
by the large density difference between the high-Ti and low-
Ti melts. Dissolution produces a zone of high-Ti melt + Cr-
usp, which shows a sharp compositional gradient at its exte-
rior contact with low-Ti melt. On the bottom of the ilmenite
disk. the dense high-Ti melt + Cr-usp mix with the underly-
ing liquid as the ilmenite dissolves. Estimation of the fraction

of ilmenite disk dissolved on the top and bottom is possible
in several experiments and indicates that the differences in
dissolution rates between top and bottom are indistinguish-
able.

These complications indicate that mass transfer in the melt
was not solely by chemical interdiffusion. However, similar
complexities are likely to have operated in the lunar interior
when a Jow-Ti magma interacted with ilmenite-bearing cu-
mulates. Low-Ti melts that rise from depth and infiltrate
high-Ti cumulates would interact with the dissolving cumu-
lates in a manner analogous to the dissolution and mixing
processes that occur in the bottom portion of the dissolution
experiments. Thus. we judge the experimental results to be
relevant 10 the problem of petrogenesis of high-Ti magmas
by assimilation.

Fig. 5. Backscattered electron micrographs of products of disso-
lution of ilmenite in Apollo 15 green glass liquid. Experiments
BPC-49 und BPC-52 are shown. Bright rectangle is ilmenite sur-
rounded by a high-Ti melt + Cr-usp boundary layer. Dark borders
are edges of the graphite container. Gray levels in surrounding
quenched glass (with quench crystals) reflect variations in TiO,
content. In both experiments convective instabilities are homoge-
nizing the melts below the ilmenite disk. Above the disk, the high-
Ti melt is trapped in a boundary layer. [n BPC-49 the low and
high-Ti melts are separated by a dark crack that formed during
sample preparation.
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Table 4.

4. DISCUSSION
4.1. Formation of Lunar Magmas
4.1.1. Cumulate remelting model

It was initially proposed that low-Ti magmas formed by
remelting of the deep Ti-poor cumulates, while high-Ti mag-
mas formed by remelting of the shallow, Ti-rich cumulates.
This model offered a straightforward explanation of the

broad compositional diversity of lunar magmas and was con-
sistent with the results of experimental studies of the mare
basalts. Experimental melting studies of low-Ti mare basalts
showed them to be liquidus cosaturated with ol + opx at
pressures indicating depths of segregation at 200-400-km
(Green et al., 1971 and Grove et al., 1973), similar to the
proposed depth of ol = low-Ca pyroxene cumulates. High-
Ti mare basalts showed liquidus cosaturation with ilmenite,
cpx, and spinel at pressures indicating depths of ~100-km
(Longhi et al., 1974), similar to the depth of the proposed
ilmenite-bearing cumulates.

4.1.2. Inconsistencies with cumulate remelting model

The simple cumulate remelting model, however, proved
inconsistent with experimental studies of ultramafic glass
compositions (summarized in Table 6), which provide in-
herently better choices for lunar primary magmas than mare
basalts ( Delano, 1986). First of all, the high-Ti ultramafic
glasses are not saturated on their liquidus with ilmenite at
any pressure. The Apollo 14 black glass is the most Ti-
rich ultramafic glass and is not near liquidi saturation with
ilmenite (Fig. 3). It does have Cr-usp on its liquidus that
contains 10—15 wt% TiO», but the Cr-usp also has 30 wit%
Cr,0. and. therefore, could not be present in significant abun-
dance in the lunar interior. Studies of the Apollo 15 red
glass, the ultramafic glass second highest in Ti, show similar
liquidus relations (Kesson, 1975; Delano, 1980). The disso-
lution rate experiments also show that the Apollo 14 black
glass composition is very far from saturation with ilmenite.
These experiments produced liquids with over 30 wt% TiO,
(run #54, Fig. 6) that are not ilmenite saturated.

Secondly, both low- and high-Ti ultramafic glass composi-
tions are cosaturated with ol and opx on their liquidus in the
pressure range of 1.5-2.5-GPa, with no relationship between
TiO, content and pressure of multiple saturation (Table 6).
This has been interpreted to indicate that both low- and high-
Ti magmas are derived from melting of similar deep. mafic
magma ocean cumulates at depths between 300-500-km.
This depth is well below the < 100-km depth predicted for
the late stage. ilmenite-bearing cumulate layers.

4.1.3. Cumulate overturn model

A possible resolution to the second problem is that the
lunar cumulate pile overturns and mixes the ilmenite-bearing
layer (Ringwood and Kesson, 1976), or melts of the ilmen-
ite-bearing layer (Hess and Parmentier, 1995), with the low-
Ti magma source. A number of physical models of the
magma ocean cumulate pile support this large-scale overturn
event (Herbert, 1980: Spera, 1992; Hess and Parmentier.
1995).

4.1.4. Inconsistencies with cumulate overturn model

There are a number of arguments against the cumulate
overturn models. The first is that the physical models of
the cumulate pile that show overturn require that the il-
menite-bearing layer is very thick, 5-10% ot the total
magma ocean ( Spera, 1992: Hess and Parmentier, 1995).
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Table 6. Temperature and pressure of liquidus saturation with olivine and low-Ca pyroxenc.

Mission Glass type TiO, (wt.%)  Temperature °C  Pressure (GPa) Reference
Apollo 15 green 0.26 1525 2.0 1
Apollo 14 VLT 0.55 1520 22 2
Apollo 17 VLT 0.63 1500 18 3
Apotlo 17 orange 9.12 1482 22 4
Apollo 15 red 13.8 1463 25 5
Apollo 14 black 16.4 1430 1.5 This study

Temperature and pressure of olivine and opx multiple saturation for ultramafic glass compositions.
Data: (1) T. L. Grove, unpubl., (2) Chen and Lindsley ( 1983). (3) Chen et al. (1982), (4) Green et al.

(1975}, and (5) Delano (1980).

Snyder et al. (1992) argue that this is unreasonably thick
because ilmenite precipitation would likely initiate small,
localized convection. The density anomaly of an ilmenite-
bearing layer would thus be smeared out across a thicker,
less dense layer than that required by overturn models.
Another argument against the overturn models is the
strong correlation between TiO, content and temperature
of liquidus saturation with ol + opx (Fig. 7). The AP 14
black and AP 15 red glasses have the lowest liquidus
temperatures, but define the low- and high-pressure ex-
tremes of ol + opx liquidus saturation for both low and
high-Ti ultramafic glass compositions (Table 6). If the
overturn model were correct, this would indicate a nega-
tive temperature vs. depth profile.

The final and strongest argument against formation of
high-Ti magmas by the lunar overturn model is that the high
compressibilities and densities of high-Ti magmas would
prevent their eruption if they were produced at similar depths
to the low-Ti magmas. Delano (1990) calculated that high-
Ti compositions would become denser than their crystalline
surroundings at relatively modest pressures. Agee and Cir-
cone (1995) have contirmed this result with falling sphere
experiments that show that Apollo 14 black glass liquids

20 v T T T v
AP 14 black glass

*

15 r 1
‘ AP 15 red glass
2
gu 1 0 b .
S AP 17 orange glass 4p
i= AP 15 green glass
571 AP 14 VLT glass / ]

AP 17 VLT glass

i " i 2 i
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1420 1450 1480 1510 1540
Temperature-°C

Fig. 7. Plot of TiO, in wt% against the temperature of liquidus
cosaturation with olivine and low-Ca pyroxene. Data from this study,
Green et al. (1975); Delano (1980); Chen et al. (1982): Chen and
Lindsley (1983).

would become denser than olivine and low-Ca pyroxene
cumulates at pressures corresponding to 200-300-km depth.
Consequently, if the ilmenite tayer sank and enriched the
source in Ti, melts of these regions would sink into the deep
lunar interior rather than erupt on the surface. Hess (1991)
proposed a way to overcome this problem through partial
crystallization and entrainment of high-Ti liquid in ascending
diapirs.

Alternatively, some process besides melting could take
place during lunar magma formation. If the lunar magma
source is at 300—500-km depth, magmas must ascend sig-
nificantly farther through the lunar mantle to erupt than ter-
restrial magmas must travel through the Earth’s mantle. It
is possible that some processing takes place en route that
alters lunar magma compositions. If this process is responsi-
ble for generating the range in TiO, contents observed in
lunar magmas, its characteristics are as follows: (1) it in-
creases liquid TiO, content; (2) it lowers liquidus tempera-
ture; and (3) it produces liquids that are not in equilibrium
with a very high-Ti phase. Assimilation of the Ti-rich, ilmen-
ite-bearing cumulates by low-Ti primary magmas is compati-
ble with all of these characteristics. Assimilation of Ti-rich
cumulates would increase magmatic TiO, content, while de-
creasing liquidus temperature as it drops to supply the heat
of fusion for assimilation. In addition, the assimilating liquid
is not required to come to equilibrium with the ilmenite
assimilant and thus may not be near saturation with it in
experimental studies.

4.2. Assimilation Model for High-Ti Magma Genesis

An assimilation origin for high-Ti mare basalts was ini-
tially proposed by Anderson (1971), who suggested that
high-Ti magmas were derived from low-Ti primary magmas
that assimilated armalcolite at subcrustal depths. This model
proved inconsistent with studies of armalcolite stability
(Kesson and Lindsley, 1976). The assimilation model was
revived by Hubbard and Minear (1975) who proposed that
high-Ti magmas were produced by selective assimilation
of the ilmenite and clinopyroxene bearing magma ocean
cumulates into low-Ti primary magmas. Ringwood and Kes-
son (1976) rejected this model based on the assumptions
that: (1) ilmenite and clinopyroxene would be assimilated
in the proportions in which they are present and (2) the only
heat available for assimilation is that provided by the latent
heat of crystallization. We argue below that these assump-



Petrogenesis of ultramafic high-Ti lunar glasses

1323

Table 7. Mass balance calculations for assimilation reaction.

Proportion of components
Delano # Glass Type MgO AlLO, SiO, CaO TiO, Cr,0, MnO FeO Na O K,0 Xr| Parent Liquid Olivine llmenite cpx urKREEP Pigeonite
Apollo 17 glasses
#19 Orange 116 7.61 388 854 929 066 029 229 039 000 05 0.99 -0.24 0.15 005 0.03 -
model 115 752 389 833 935 004 026 228 013 003
#17 Orange 149 581 386 742 915 069 000 230 038 000 06 0.84 -0.08 015 009 000 -
model 151 601 386 755 922 0.1 026 229 009 0.00
#16 Orange 147 621 394 752 862 067 028 222 041 004 05 081 -0.09 0.14 010 003 -
model 148 637 392 781 861 0.1 025 222 0.12 003
#15 Yellow 126 803 404 862 688 063 025 222 039 000 06 1.07 -0.24 0.il 001 0.03 -
model 125 790 405 833 696 000 025 222 0143 002
Parental Liquid
#11 Green 196 692 445 743 091 000 023 203 0.10 0.00
Apollo 15 glasses
#22 Red 121 7.14 356 7.88 138 077 025 219 049 0.12
model 120 7.09 356 7.75 138 048 025 219 021 0.19 02 0.38 -0.01 024 0.6 023 -
#18 Orange 149 565 380 743 9.15 065 000 238 036 0.00
model 151 605 38.0 742 934 058 025 235 000 000 OS5 0.80 -0.01 0.17 005 0.00 -
#13 Yellow 135 829 429 849 348 059 027 221 045 000
model 136 795 430 898 380 058 024 217 000 000 09 1.07 -0.14 0.06 - - -
Parental Liquid
#5 GreenD 176 743 451 843 041 055 022 203 0.00 000
Apollo 14 glasses
#24 Black 131 454 336 681 162 091 031 242 023 0.6
model 13.1 454 336 679 162 064 028 242 005 003 0.1 051 -0.06 029 0.14 002 0.10
#23 Red 131 484 358 653 154 000 000 238 050 0.00
model 13.1 492 358 662 154 075 027 238 005 003 09 0.55 -0.13 028 008 0.01 022
#21 Orange 144 564 369 698 124 085 031 220 028 029
model 144 565 369 696 124 062 026 220 0.2 009 0.1 0.50 -0.04 022 0.1 0.09 0.12
Parental Liquid
#1 GreenB 191 7.13 447 801 04 054 024 198 006 003
Apollo 11 glasses
#20 Orange 144 571 375 766 101 063 0.00 238 031 0.00
model 144 589 375 769 101 054 0.10 237 0.01 000 02 0.69 -0.02 0.18 0.1l - 0.05
Parental Liquid
#9 Green 17.1 799 439 847 06 046 000 216 000 000
Other Components
Olivine 40.0 0.10 390 040 0.10 040 020 197 0.00 0.00
timenite 350 001 00 000 538 075 042 415 0.00 0.00
Clinopyroxene 163 249 502 150 256 035 020 130 007 0.00
urKREEP 107 168 485 9.62 1.69 019 014 107 087 034
Pigeonite 246 271 531 442 060 121 0.5 132 000 0.00

Model and Proportions of components were determined by muitiple linear regression of parental green glass liquid and Other components
against the high Ti glass compositions. Glass data is from Delano (1986). The olivine and pigeonite compositions are in equilibrium with the
Apollo 15 green glass, from experiments of Green and Ringwood (1973). The ilmenite composition is from a highly evolved mare basalt
from Apolio 17. sample 70125 reported in Dymek et al. (1975). Clinopyroxene composition is an average from the crystallization experiments
of Grove and Beaty (1980) on the Apollo 11 high-K basalts. urKREEP composition is from Warren and Wasson (1979).

tions are not valid and that an assimilation model for the
formation of high-Ti lunar magmas is plausible.

4.2.1. Mass constraints on the assimilation model

The assumption that magma ocean cumulates will be as-
similated in bulk, i.e., the proportions in which they are
present, is not valid since relative dissolution rates of ilmen-
ite and cpx might exercise a control on the assimilation ratio.
We estimated the proportions of assimilants through mass
balance calculations involving multiple linear regression. A

low-Ti green glass parent and possible assimilants were used
to model a variety of high-Ti glass compositions (Table 7).
The range of possible assimilants was selected from the
magma ocean crystallization model of Snyder et al. (1992),
which is based on the MAGFOX and MAGPOX programs
of John Longhi. According to the Snyder et al. ( 1992) model,
the magma ocean reached ilmenite saturation after 95% crys-
tallization while crystallizing an assemblage of ilmenite, cpx,
pigeonite, and plagioclase. We assume that all plagioclase
elutriated upward into the crust and have not included it in
the regressions. The results of the regressions support this
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Table 8. Thermal energy budgets for assimilation.

High Ti-glass formed AT, superheat °C  Heat avail (cal/g,) Heat required (cal/g,) AHeat % Diff
AP 17 Orange (Delano #19) 110 57 22 +35 +158%
AP 17 Orange (Delano #17) 110 43 29 +14 +47%
AP 17 Orange (Delano #16) 110 44 32 +12 +38%
AP 17 Yellow (Delano #15) 90 49 13 +36 +283%
AP 15 Red (Delano #22) 130 42 136 -94 -69%
AP 15 Orange (Delano #18) 110 34 26 +8 +29%
AP 15 Yellow (Delano #13) 90 40 6 +34 +580%
AP 14 Black (Delano #24) 160 61 104 -44 -42%
AP 14 Red (Delano #23) 130 62 106 -44 -41%
AP 14 Orange (Delano #21) 110 41 99 -59 -59%
AP 11 Orange (Delano #20) 110 42 49 -7 -14%

Calculated based on proportions from Table 7. Constants used: C)*"™ = 0.3-cal/(°C#g); AH, =
50-cal/gram for urKREEP. Values for AH, are taken from Hon and Weill

olivine, ilmenite, and pigeonite; AH,; =
(1982), and Estimation of AT discussed in text.

decision, as no model compositions are deficient in Al,O;
or Ca0. We also assume that this layer contained urKREEP,
the final dregs of magma ocean crystallization.

High-Ti glass compositions are recovered remarkably well
for all major elements by the simple model. This is particu-
larly important for FeO because one of the major arguments
against an assimilation origin is that the FeO contents of
high and low-Ti ultramafic glasses are very similar, and that
formation of high-Ti magmas by ilmenite assimilation would
also result in elevated FeO contents. As can be seen in Table
7, high-Ti contents can be produced in low-Ti parents with
relatively modest increases in FeO if silicates are assimilated
along with ilmenite. The results also show that mass balance
always requires the assimilation of more ilmenite than cpx
and generally also requires the crystallization of olivine. Pi-
geonite and urKREEP assimilation is required by some, but
not all models. The crystallization of olivine and assimilation
of all other phases is consistent with expected phase equilib-
rium controls. The liquidi of the glass compositions are not
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Fig. 8. Plot of the liquidi of Apollo 14 black glass (this study)
and Apollo 15 green glass (T. L. Grove, unpubl. data).

100-cal/gram for

saturated with any of the assimilated phases at the 100-km
depth or 0.5-GPa pressure at which assimilation is inferred
to take place. Low-Ti liquids are only saturated with olivine
on their liquidi at these pressures, and high-Ti liquids are
only saturated with ol or Cr-usp (Fig. 3; Kesson, 1975;
Delano, 1980).

Assimilation of 20-30% late stage liquid is supported by
the high trace element abundances of the Apollo 14 high-Ti
ultramafic glasses (Shearer and Papike, 1992). The propor-
tions dictated by mass balance are significantly lower than
that and may indicate that major element mass balance mod-
els are not a sensitive indicator of the proportion of KREEP
component, possibly because the major element composition
of KREERP is difficult to constrain. The very low-alkali abun-
dances of the model liquids relative to the high-Ti glass
compositions may indicate that KREEP has much higher
abundances of alkali elements than presently thought.

4.2.2. Thermal energy constraints on the assimilation
model

The proportions of reactants ( Table 7) were used to esti-
mate the thermal energy budget of the assimilation reaction
(Table 8). Heat for assimilation is provided from olivine
crystallization and superheat due to adiabatic ascent of the
primary liquid. Heats of fusion were assumed to be similar
to those calculated by Hon and Weill {1982). The amount
of superheat available can be calculated using the difference
in liquidus temperatures between high and low-Ti glasses.
The Apollo IS green glass liquidus (T. L. Grove, unpubl.
data) is approximately 100° higher than the Apollo 14 black
glass liquidus (Fig. 8). We assume that the green glass-type
primary magma segregates from its source at the temperature
and pressure at which it is multiply saturated with ol and
opx, 2-GPa (400-km) and 1550°C. This melt ascends adia-
batically to the ilmenite and cpx cumulate layer at 100-km
depth (~0.5-GPa pressure, Fig. 8). At this point the liquid
is 160° hotter than the black glass liquidus (Fig. 8). Assum-
ing the Cp™ = 0.3-cal/(°C+g), the difference in liquidi
temperatures furnishes 48-cal/(gram of green glass) from
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Table 9. Results of experimental studies of the dissolution rate of epx.

1325

Press. (kb) Temp. °C um diss. Time (seconds) Diss. rate (cm/s) Iim. Diss. Rate  Ratio ilm/cpx diss
Zhang et al. 1989
215 1375 56 1810 3.1E-06 9.5E-06 3.1
10.5 1305 40 4190 9.5E-07 2.4E-06 2.5
10.5 1305 26 890 2.9E-06 2.4E-06 0.8
Average 2.1
Brearley and Scarfe 1986

5 1250 1.1E-06 8.1E-07 0.7
5 1300 4.8E-06 2.2E-06 04
12 1300 1.6E-07 2.2E-06 13.6
12 1350 Time independent 1.4E-06 5.8E-06 4.0
12 1400 6.3E-06 1.6E-05 2.5
30 1450 9.1E-07 4.2E-05 46.4
30 1500 2.5E-05 1.1E-04 4.5
Average 7.3

Data from Table 4, Brearley and Scarfe ( 1986) and Zhang et al. (1989).

the superheat for assimilation. The differences in liquidus
temperature between the green glass and the red, orange, and
yellow glasses were estimated by subtracting the difference
between the temperature of their experimentally determined
multiple saturation point and that of the black glass’s (Ta-
ble 8).

Superheat plus the heat of olivine crystallization provides
more than enough heat for assimilation for most of the or-
ange and yellow glass models with up to 10 wt% TiO;.
For the very high-Ti glasses, the red and black glasses, the
superheat and olivine crystallization only provide about half
of the heat required for assimilation. Some minor additional
heat may be available during the formation of the red and
black glasses due to the crystallization of Cr-usp. There also
may be a larger amount of superheat available if low-Ti
primary magmas are generated at greater depths than indi-
cated by their ol + opx cosaturation point. Longhi (1992)
suggests that the ol and opx cosaturation point of the green
glass magmas is an artifact of aggregation of liquids pro-
duced by near-fractional decompression melting of the lunar
mantle starting at depths >1000-km (5-GPa). For example,
segregation of the low-Ti parent from the mean depths pro-
posed by Longhi (1992) could provide sufficient heat for
the assimilation reaction. Therefore, models for producing
the Apollo 14 black, red. and orange ultramafic glasses must
call upon low-Ti ultramafic magmas that segregated from
greater depths, possessed higher liquidus temperatures than
those used in the model presented in Table 8 and that have
not yet been identified in the lunar samples. Moreover, the
process could be more complex, as demonstrated by terres-
trial magmatic systems where multiple injection and magma
mixing occur and heat and mass transfer are decoupled (e.g..
Hildreth and Moorbath, 1988; Baker et al., 1991). For these
reasons we hesitate to develop more complex models than
those outlined in Table 8.

4.2.3. Kinetic constraints on the assimilation model

All of the regression calculations show that more ilmenite
must be assimilated than c¢px to produce a high-Ti magma

from a low-Ti parent (Table 7). The ratio of ilmenite to cpx
assimilated varies from 1.4 to 8.7, with an average value of
~3 (excluding the Apollo 15 yellow glass model which
requires no pyroxene assimilation). Magma ocean crystalli-
zation models, however, show that much less ilmenite than
cpx would be present in the magma ocean cumulate pile.
For example, the crystallization model of Snyder et al.
(1992) yields an ilmenite to cpx ratio of approximately 0.5
for the ilmenite-bearing cumulates. This discrepancy be-
tween the ratio dictated by mass balance and the likely pro-
portion of these phases in the lunar interior offers a simple
kinetic test of the assimilation model: if ilmenite dissolves
significantly faster than cpx, assimilation is a feasible mecha-
nism to produce high-Ti magmas, and if it does not, assimila-
tion is not a feasible mechanism.

Although dissolution rate data for ilmenite did not exist
before this study, the dissolution rate of cpx was determined
by Brearley and Scarfe (1986) and Zhang et al. (1989).
There are significant differences between these studies and
our own in terms of liquid compositions studied and tempera-
ture, so only general inferences can be made. Brearley and
Scarfe (1986) determined the dissolution rates of natural,
mantle cpx in alkali olivine basalt by using spheres sur-
rounded by melt. Their dissolution rates for cpx at 1.2-GPa
are 2.5—14 times slower than our ilmenite dissolution rates
at 1-GPa (Table 9, Fig. 4). Zhang et al. (1989) studied the
dissolution of endmember diopside in andesitic liquid using
the disk-sandwich technique employed here (Fig. 2). The
Zhang et al. (1989) shortest duration experiment shows a
diopside dissolution rate similar to the dissolution rate of
ilmenite at this temperature (Table 9, Fig. 4), however, in
the Zhang et al. ( 1989) experiments of similar duration to
our own the dissolution rate of diopside is approximately
three times slower than that of ilmenite.

The regression results require that ilmenite and cpx are
assimilated in roughly a 3:1 ratio by weight or a 2:1 ratio
by volume. The average ratio of our ilmenite and the Zhang
et al. (1989) cpx dissolution rate data (Table 9) is 2:1, which
matches the ilmenite/cpx volume dissolution ratio from
mass balance. The ilmenite bearing layer of Snyder et al.
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(1992) contains ilmenite and cpx in a 1:2 ratio, which is an
exact match for the ratio of the dissolution rates. This value,
however, does not take into account the cpx crystallized
prior to the onset of ilmenite crystallization.

A more complex model of the assimilation process is
beyond the scope of present work. Kinetic aspects of assimi-
lation in the lunar interior cannot be modeled directly be-
cause the relative proportions of assimilants are poorly con-
strained and more relevant dissolution rates for cpx must be
determined. Based on the present results, we infer that the
dissolution rate of ilmenite is significantly faster than that
of cpx in lunar magmas, which supports assimilation as a
viable mechanism to produce high-Ti ultramafic magmas.

S. CONCLUSIONS

We conclude that the high-Ti ultramafic glasses may be
produced by assimilation of ilmenite + cpx = urKREEP
* pig into low-Ti ultramafic primary magmas. This model
is consistent with compositional, thermal, and kinetic aspects
of the assimilation reaction. Assimilation must take place in
the shallow lunar mantle in order for there to be sufficient
superheat to drive assimilation.
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